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The classical yielding theory of Tresca is generalized to include the effects of both hydro- 
static pressure and normal stress in the slip plane. The three-parameter theory is the most 
general for polyhedral yield surfaces. The new theory is applied to the yielding of poly- 
styrene. Two modes of slip: a brittle mode in the form of coarse slip bands, and a ductile 
mode in the form of fine slip bands, are studied separately. All three parameters are 
determined for each mode. 

1. Introduction 
Classical yielding theories (see [1]) such as the 
Tresca and yon Mises Criteria are "one parameter" 
relations among the three principal stresses. The 
Tresca parameter is the critical shear stress and the 
yon Mises parameter is the critical distortional 
strain energy. Because of their simplicity, these 
theories could not deal with added complications 
such as the effect of hydrostatic pressure. 

An obvious extension or generalization of the 
"one parameter" theories is the "two parameter" 
theories. One of the earlier ones is the Coulomb or 
Mohr-Coulomb criterion [1] in which the critical 
shear stress is no longer constant but depends on 
the normal stress across the plane much like the 
sliding friction. Another is Drucker's modification 
[2] of Tresca and yon Mises criteria in which the 
critical shear stress or the critical distortional 
strain energy depends on the hydrostatic com- 
ponent of stress. Although Drucker considered his 
modification a "proper generalization" of the 
Coulomb criterion, they are distinctly different. 
For example, in the Coulomb criterion, the 
direction of shear yielding is affected by the 
Coulomb friction. Yet in Drucker's modification 
of Tresca criterion, the direction of shear yielding 
remains that of maximum shear stress independent 
of the pressure coefficient. 

This distinction is often not recognized and is a 
source of confusion in the recent literature. For 
example, Whitney and Andrews [3] used hydro- 
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static component of stress (called mean normal 
stress by them) in the Coulomb criterion and yet 
stated that the\direction of yielding depends on 
the coefficient. Argon e t  al. [4] obviously did not 
attempt to differentiate between the effect of 
normal stress and that of pressure since they stated 
that the departure of shear bands from the plane 
of maximum shear stress can be explained by the 
strong pressure dependence of yielding, in fact in 
their Fig. 10, the or-e2 yield envelope represents 
the pressure effect but the ~--o envelope represents 
the effect of normal stress. This figure was repro- 
duced by Ward [5] without clarification. Ward, 
too, did not attempt to differentiate between 
normal stress and pressure effects. In his book [1] 
on p. 298, the figure was mislabelled as Mohr-  
Coulomb yield criterion but actually it represents 
the pressure effect. Christiansen e t  al. [6] used a 
pressure term in the Mohr-Coulomb criterion and 
considered that as a slight modification. Matsushige 
e t  al. [7] considered the Coulomb criterion as a 
pressure modified Tresca criterion and yet used a 
Mohr envelope to represent the effect. 

However, many authors do differentiate be- 
tween the normal stress and the pressure effects. 
For example, Bowden and Jukes [8] examined the 
three possible two-parameter yield criteria, namely, 
the Mohr-Coulomb, the pressure modified Tresca, 
and the pressure modified Von Mises, and con- 
cluded that some polymers obey one and others 
another. Haward e t  al. [9] considered the Mohr-  
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Coulomb criterion and treated the pressure effect 
in terms of Coulomb friction. Physically the 
pressure modified yon Mises criterion is not self 
consistent since it puts pressure in a different 
category of  stress although empirically it is a valid 
two-parameter yield surface. This leaves only two 
physically sound two-parameter criteria, namely 
the Mohr-Coulomb and the pressure modified 
Tresca criteria. Although these two criteria are 
different, they do not have to be mutually 
exclusive. 

For shear yielding at the microstructural level 
as studied in the previous paper, the Coulomb 
criterion is needed to understand the angular de- 
parture for the shear bands from the maximum 
shear stress directions. But the Coulomb criterion 
alone is not sufficient, since, for the fine bands 
which intersect at 90 ~ indicating negligible 
Coulomb friction, the yield stress still depends on 
pressure. Thus it seems unavoidable to consider a 
three-parameter yield surface. These three par- 
ameters can be taken conveniently as the intrinsic 
Tresca shear stress, the normal stress coefficient 
(Coulomb friction) and the hydrostatic stress 
coefficient. This set of  parameters define a poly- 
hedral yield surface rather than a curved one. But 
it seems more physical than, for example, a re- 
lation between the three invariants of  the stress 
tensor. It predicts also the directional properties 
of  the shear band without further assumptions 
regarding plastic stress-strain relations. 

The purpose of this paper is to examine the 
three-parameter yield surface in some detail and to 
present some experimental results for the deter- 
mination of  these parameters. 

2.  G e n e r a l  s h e a r - y i e l d  sur face  
For an isotropic material, a general polyhedral 
yield surface should have at most three parameters. 
This is so because the three principal stress axes 
can orient themselves in any direction and an 
equation for a plane is determined by three 
constants. 

Following previous work but making a clear 
distinction between the effects of  normal stress 
and hydrostatic stress, yielding is assumed to take 
place such that the following relation is satisfied: 

I71 Jr- O~On -[- /~Oh ~ 9-0- (1) 

In this relation, r is the shear stress and On is the 
normal stress in the plane, Oh is the hydrostatic 
component of  stress, and ~, 3, and To are constants. 
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Since Equation 1 has three constants, it represents 
a general polyhedral yield surface. The quantity 7o 
is the yield stress in pure shear. Unlike the original 
Tresca criterion in which yielding is assumed to 
take place wherever the shear stress r exceeds 7o in 
magnitude, Equation 1 now takes into consider- 
ation the effects of  both % and o h. 

If the yield surface does not have planar faces, 
Equation 1 can be viewed as a local tangent plane 
so that a and/3 are the following slopes: 

= - (~ L r [ / ~ % ) %  (2)  

/~ = -- ( 3 l r l / 3 o h ) % .  (3) 

However, usually in a simple experiment, an 
increase in normal stress also increases the hydro- 
static component simultaneously. Similarly in an 
experiment involving a change of  hydrostatic 
pressure, the normal stress changes also. For these 
experiments, the changes of  yield stress are: 

dlr]  
- - - o e - - -  (4) 

don 3 
and 

dlr[  
- ~ + ~ ,  ( s )  

dP 
respectively. 

In a simple tension test, the material will yield 
along two planes whose normals make the follow- 
ing angles with the tensile axis: 

q~t = -+ tan -1 [x/(1 + a = ) -  e~] 

= -+ �89 cot - ' a .  (6) 

It is to be noted that these angles are not affected 
by ~. The angle between the two normals en- 
compassing the tensile axis is: 

0 = cot-~a. (7) 

The tensile yield stress is 

o~ = 270/[x/(1 + ~2) + ~ + ~ ] .  (8) 

Similarly in a simple compression test, the 
material will yield also along two planes whose 
normals make the following angles with the com- 
pression axis: 

r = -+ tan-1 [X/(1 + ~2) + a] 

= -+ �89 -- cot-la).  (9) 

It is noted that the angle between the two normals 
not encompassing the compression axis is also 
given by Equation 7. The compressive yield stress 



is (taken as positive), 

oc = 2ro/[X/(1 +a2)--c~--~31. (10) 

Equations 8 and 10 show that the material has 
a strength differential effect [10] given by 

RSD = 2(c~ + ~t3)/x/(1 + ~2). (1 1) 

In a triaxial stress situation, let ol, o2 and o3 be 
the principal stresses. Consider a plane whose 
normal has direction cosines kl, k2, and k 3. Then 
on this plane the total stress is o: 

0 2  2 2 Olkl + o~k~ + 2 = o3k3 (12) 

the normal st1%s is 

% = olk 2 + o~k~ + o3k~ (13) 

and hence the shear stress is 7-: 

r 2 = 0 2 -  %.~ (14) 

By definition, the hydrostatic component of  stress 
is 

O h = 1(O" 1 q- 0 2 +  O3). ( 1 5 )  

Thus yielding will occur in this plane when 
Equation 1 is satisfied. To see along which plane 
yielding is most likely to take place, the left hand 
side of  Equation 1 can be maximized with respect 
to the direction cosines. It is found that for 
o~ > 02 > 03, the direction cosines are 

k~ = I / { I  + [X/(1 + ~ )  -- a] 2 } 

k~=O 

k~ = 1/{1 + [X/(1 + ~2) + (~]~}. (16) 

Equations 16 represent two different directions 
both perpendicular to the 02 direction. These 
directions make the same angles as r given by 
Equation 6 with the o~ direction or the same 
angles as r given by Equation 9 with the 03 
direction. The angle between the two directions 
encompassing the ol direction is also given by 
Equation 7. 

Figure 2 Plane strain projection of the three- 
parameter yield surface. 
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Figure I Plane stress yield envelope for the three-par- 
ameter yield surface. 

These direction cosines can be substituted into 
Equations 12 to 14 and then into Equation 1. 
This gives the following relation between the 
principal stresses: 

o~ 2 + 

__ yl+o  -o tl 
+a23/3 o3 2 " ~> r0 (17) 

which is also the local yield surface. Since the 
three planes 01 = 02, Oa = 03, and 03 = Ol divide the 
space into six sectors each having a different order 
of  the three principal stresses, the yield surface has 

o 2 
f ( I  - v ) o  I = ~o 2 

[TI + a~ + B~ ~ ~o a 1 = (l - v)z 2 

0 3 = V ( a l ~  

- o] 

L 6To/[3a + - 6ua_ + 4( l+v)g ]  

6VTo/ [3( l -u)~ + - 3va + 2( l+v)B]  
-6 ( l -V)Zo/ [ -Sv~ + + 3 ( l - v ) a  - 2( I+v)B]  

-6To/ [ -6v~ + + 3a - 4( l+v)B i 
[-6~ro/[-3",,~ + + 3 ( l - v )a  - 2 ( I *~)B]  

~ + = r  a_ : r  ~ 

6 V ~ o / [ 3 ( 1 - , )  % - 3va_ + 2( I+v)6 ]  
6To/[3~ + - 6 v ~  + 4( I+v)6 ]  
6 ( I - v ) ~ o / [ 3 ( I - ~ ) ~  + - 3~_  + 2(I  + v)B] 

-6~To/[-3~a + + 3 ( I - ~ ) ~  - 2( l+v)~]  

- 6 T o / [ - 6 ~ + +  3 a  - 4( I+v)B]  
-6 ( l -~ )~o / [ -3va  + + 3( l -v)~_ - 2( l+v)B]  
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six different planar faces. The intersection of  the 
yield surface with the ol-o2 plane (o3 = 0) is 
shown in Fig. 1 and that with the plane 

o3 = u(ol + o2) (plane strain) and projected onto 
the o1-o2 plane is shown in Fig. 2. 

In Fig. 1, the loop is symmetric with respect to 
the line ol = o2. When/3 = 0, AB and ED will be 
parallel to o2 and CB and EF will be parallel to o~. 
The slope of  FA is a+/a_ and that of  De is c~_/a+. 
When/3 increases such that 

/3 + - - =  ~ ,  08) 

the point E moves to - ~ ,  the slopes ED and EF 
both become unity. When/3 increases further such 

that /3(a + ~ )  = 3 (19) 

both D and F move to - ~  or DC becomes hori- 
zontal and FA becomes vertical. These effects are 
summarized in Fig. 3. 

, 2  

S L O P E ( D O )  < 0 

1.0[ " q b N ~  (FA) < 0 

o.~ r s.oPE IEOI< , ""-.~.J~ 
~ ' ~  (EF) > I " - - ~ "  I 

# ~ /oc) >o ~ I ,>o - - - . - . . . z  

xP "oo 

~ > 7 ~ ~  

SLOPE (EO) > [ 
0.2 (EF) < I 

O. 
O. O.g 0.4 0.6 0,8 1.0 

Figure 3 The effects of c~ and/3 values on Fig. 1. 

1.2 

In Fig. 2, the loop becomes identical to that of  
Fig. 1 when v = 0. For u = 0.5, the loop becomes 
open with A, B, and C merging into one point at 

o ,  = o2 = ~-o/(~ +/3). (20) 

The slope DC becomes [ x / ( l + a 2 ) - - a - - 1 3 ] /  
Ix/(1 + c~ 2) + a +/3] and the slope FA becomes 
the reciprocal of  that. The points D and F have 
gone to - -~ .  For other v values, the loop opens 
when the point E moves to - - ~  at 
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Figure 4 The effects of a, r and v values on Fig. 2. 

/3 = 3 [(1 -- 2v)%/(1 + c~ 2) -- (1 + 2v)~l /4(I  + v). 

(21) 

Equation 21 is plotted in Fig. 4 for v = 0, 0.1,0.3,  
and 0.5. At v = 0.5 the line becomes a +/3 = 0 and 
hence the loop is open at any positive c~,/3 values. 
The loop opens more when D and F move to - -~ .  
This happens when 

/3 = [3(1 -- 2v)x/(1 + c~ 2) -- 3cq/2(1 + v). (22) 

Equation 22 is plotted also in Fig. 4 for u = 0, 
0.1, 0.3, and 0.5. The curve for u = 0 is the same 
as the one for slope DC = 0 and that for u = 0.5 is 
again c~ +/3 = 0. The loop opens further when the 
slope of  DC becomes zero or that of  FA becomes 
infinite. This happens when 

3 [X/(1 + a2) _ ~] = 2(1 + u)t3. (23) 

Equation 23 is plotted also in Fig. 4 for v = 0, 
0.1, 0.3, and 0.5. It is seen that for plane strain 
compression, yielding is in general more difficult 
than for plane stress compression. 

Fig. 2 shows also that in a tension test, the 
yield stress for plane strain is 

~  2r~ (24) 

and similarly the yield stress in compression is 
(taken as positive) 

oe = 2 to /k / (1  + a 2 ) - - a  2(1 + v)/3]. (25) 
3 k A 
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Figure 5 Cross-section of  yield surface on a (1 1 1) plane. 

These relations give the following relative strength 
differential effect [ 10] ' 

RSD = 2 [a + 2( I + v-------) I3] /`/(1+ (26) 

This effect is seen to be slightly different from 
that given by Equation 11 for plane stress. 

Since the yield surface has a three-fold sym- 
metry around the [1 1 1] direction, it is interesting 
to look at a section cut by an octahedral plane of  
constant Oh.. This is shown in Fig. 5. It is not a 
regular hexagon although all the sides are equal to 

A--B = 6 ` /2 [ ro - -  (c~ + ~)Oh] X 

`/(3 + 4a2)/(9 + 8a2). (27) 

Owing to the three-fold symmetry,  the lengths 
OA, OC and OE are equal and are: 

O--'A = 2`/6 [7o --  (a + 13)crh]/[3,/(1 + a2) + cq. 

(28) 

Similarly, the lengths OB, OD and 0-F are equal. 
The ratio between them is 

OA/OB = [3,/(1 + ~ ) -  ~] t[3,/(1 + ~ )  + ~] 

(29) 

which is shown in Fig. 5. It is seen that all these 
dimensions become zero at 

oh = ~o/('~ + ~). (30) 

In other words, the yield surface is a hexagonal 
pyramid. This is true even when a or 13 is zero. 
However, when 13 is zero, the pyramid becomes 
regular. 

3. Experiments on polystyrene 
3.1. Two distinct shear processes 
It is well known that when crazing is suppressed, 
amorphous polymers such as polystyrene deform 
by localized shear with the appearance of intense 
shear bands [11]. More recently Bowden and 
Raha [12] and Kramer [13] reported what ap- 
peared in the optical microscope "diffuse" shear 
zones which sometimes accompany the intense 
shear bands. A careful study of the diffuse shear 
zones (see previous paper) using electron micro- 
scopy revealed numerous, discontinuous, less well- 
defined but nevertheless distinct fine shear bands 
usually appeared in two sets intersecting at nearly 
right angles. An example is shown in Fig. 6. Obvi- 
ously there are two shear processes in the defor- 
mation of polystyrene, a "coarse band" process 
and a "fine band" process. Besides the difference 
in their appearances, the coarse band propagates 
fast and along a localized path, inclines at more 
than 45 ~ with the tension axis or less than 45 ~ 
with the compression axis, and invariably produces 
shear fracture when it propagates across the speci- 
men. On the other hand, the fine bands spread by 

Figure 6 Coarse and fine slip bands viewed in the electron microscope. 
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multiplication mainly along the maximum shear 
stress direction, contribute largely to the macro- 
scopic strain and cause shape changes of the speci- 
men, but do not induce shear fracture. Hence the 
"coarse band" process is also a brittle mode and 
the "fine band" process a ductile mode. There are 
ways to change the relative abundance of these de- 
formation modes. For example, furnace cooled 
specimens favour the brittle mode while quenched 
specimens favour the ductile mode. These findings 
are discussed in the preceding paper. The following 
experiments were designed to estimate the three 
parameters, ix, /3, and Zo in the yield criterion, 
Equation I, for each of the two shear processes. 

3.2. Material preparation 
Atactic polystyrene available commercially from 
Westlake Co in the form of sheets 0.25 in. thick 

was cut into blocks of proper sizes and annealed at 
115~ for 20h. The annealed blocks were either 
furnace cooled for the study of coarse bands or 
quenched in liquid nitrogen for the study of fine 
bands. Specimens were then machined from these 
blocks and polished to 0.05/~m alumina finish. 

From gel permeation chromatography, the 
weight-average molecular weight is 599 000 and 
the number-average is 348 000. The glass transition 
temperature was determined to be 101~ by dif- 
ferential scanning calorimetry. 

Figure 7 The initiation of coarse bands around a hole under compression. 
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Figure 8 Details of one of the band packets in Fig. 7 showing the numerous intersections of coarse bands. 

3.3. The determination of 
Based on the three-parameter theory of the yield 
surface just presented, the parameter  c~ can be 

determined directly from the angle at the inter- 
section of  slip bands by using Equation 7. 

For the study of coarse bands a hole of  0.11 cm 
diameter was drilled through the thickness at the 
centre of  a 2 cm x 2 cm square specimen (0.25 in. 
thick). The stress concentration was needed to 
facilitate product ion of  coarse bands and reduce 
the interference of  fine bands. Fig. 7 shows the 
successive stages of  the appearance of  coarse bands 
when the specimen is compressed along one of  its 
sides at different stresses. It is seen that  when four 
band packets are fully developed, numerous inter- 
sections can be seen as enlarged in Fig. 8. The 
angles of these intersections were measured from 
such optical micrographs and the a 's  calculated by 
Equation 7. Some corrections were made because 
of the fact that  these micrographs are taken on 
unloaded specimens. Since the coarse bands do not 
produce much plastic strain, the total  compressive 
strain is nearly all elastic and recoverable. The 
correction amounted to about 3 ~ using the fol- 
lowing equation: 

~corr 1 + mlm2~ 2 
- ( 3 1 )  

O~ (1 + mlrn2)~ 

where f = ( l - - e ) / ( 1  +ue), e is the recovered 

strain (taken as positive), and rnl ,  rn2 are the 
observed slopes of  the intersecting bands when 
compression is along the y-axis. The corrected 
angle was found to be 79 -+ 1 ~ at room tempera- 
ture corresponding to a = 0.19 +- 0.02. The results 
are plot ted as a function of  temperature in Fig. 9. 
Temperatures other than room temperature were 
achieved by testing in the Instron environment 
chamber. The strain-rate used for compression was 
always 0.005 sec -1. 
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Figure 9 The c~ values for slip bands in polystyrene as a 
function of temperature. 
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Figure 10 Electron micrograph of platinum-carbon replica of deformed surface showing the intersection of fine bands 
in polystyrene. 

The room temperature angle of  79 -+ 1 ~ can be 
compared with previous results. Argon et al. [4] 
measured the angle between the compression axis 
and the band packet presumably at the relaxed 
state. They reported such angle to be 38 ~ corre- 
sponding to our angle of  76 ~ . Kramer [13] 
measured the same angle under static loading at 
the strained condition and reported 38.1 +-0.5 ~ 
corresponding to ours of  76.2 -+ 1 ~ Bowden and 
Jukes [8] did plane strain compression and re- 
ported a value corresponding to ours of  80 ~ after 
correction of  recovered strain. In view of  the dif- 
ferent testing conditions, the agreement seems 
satisfactory. 

For the study of  fine bands, specimens furnace 
cooled or quenched into liquid nitrogen were de- 
formed at room temperature using several strain- 
rates. Platinum-carbon replicas were made from 
the surface of  deformed specimens. A typical 
electron micrograph is shown in Fig. 10. Here 
again since the replicas were made on unloaded 
specimens, the angle of  intersection of  the two 
bands had to be corrected for recoverable strain as 
in the case of  coarse bands. However, an additional 
correction was needed here because of  the fact 
that fine bands produced plastic strain. The angle 
between the intersecting fine bands encompassing 
the compression axis had increased during defor- 
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mation. At the time of  observation, the angle was 
larger than when they began to appear. This cor- 
rection depended on plastic strain and was op- 
posite to the other correction. After these two 
corrections, the angle was found close to 90 ~ 
independent of  strain-rates. This angle agrees with 
Kramer's observation [13] that his "diffuse zone" 
in polystyrene tends to propagate along maximum 
shear directions. Our results for fine bands are 
shown also in Fig. 9. 

3.4. The determination of 
For the determination of  ~, it was found con- 
venient to load the specimen with a narrow 
smooth punch. The elastic problem is a classical 
one and the solution depends on the boundary 
condition assumed. As shown in Fig. 11, when the 
punch is pressed onto the specimen, two possi- 
bilities represent the extremes: the first is when 
the punch is very hard compared to the specimen 
so that the displacement under the punch is 
constant. This solution involves two singularities at 
the corners of  the punch and hence the elastic 
field is more complex. The other is when the 
punch is soft compared to the specimen so that 
the stress is constant under the punch. No singu- 
larities appear at the corners and hence the elastic 
field is simpler. However, the two. solutions ap- 
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Figure 11 Elas t i c  s tress  f ie lds  unde r  a n a r r o w  s m o o t h  

punch .  
4 

proach each other at distances larger than the 
width of  the punch. For  simplicity, the lat ter  
solution is used. The stress field is shown in Fig. 
11. For  plane strain, Ozz = v(oxx + oyy) and for 
plane stress, ozz = 0. All other components  of  
stress are zero. s 

Based on this stress field, the maximum shear 
stress in planes parallel to the z-axis is 

Tma x = (S/g) sin ~b (32) 

where 0 = 0 1 -  ~ .  The other two principal shear 
2 stresses are, in the case of  plane stress: 

"/'max = (s/27r)(~b + sin 0) (33) 

and in the case of  plane strain: 

Tma x = (s/27r)[(1 --  2v)0 -+ sin 0] .  (34) 
I 

It is seen that  the contours for these stresses are all 
circles passing through the corners of  the punch. 
These circles are then the yield loci for a =/3 = 0. 
It can be shown that  the yield loci are still circles 
even when a and/3 are not zero. 

Thus it is only necessary to examine the situ- o 
ation along the y-axis. In units of  stir, Oxx = 
- - 0 + s i n  0, cryy = - - 0 - - s i n  0 and Ozz=O for 
plane stress and --2v0 for plane strain. Hence for 
plane stress, ozz > oxx > oyy, the yield condit ion 

Equation 17 becomes: 

(3a_ --  4/3)0 + 3a_ sin 0 ~> 6%Tr/s. (35) 

Equation 35 is in the form of  

AO +- sin 0 >~ B. (36) 

For ]A I < 1 and the + sign, the left-hand side has 
a maximum at cos 0 = - - A  or a ty2 /a  2 = (1 - - A ) /  
(1 + A ) .  For  A > 1 and either sign or for A > 0  
and the - sign, the left-hand side is largest at 
0 = rr or y = 0. For A < --1 and either sign or for 
A < 0 and the --sign, the largest value is zero at 
0 = 0 or y - +  oo. These properties and the largest 
values are shown in Fig. 12. It is seen that when/3 
is within a range of  values such that yielding takes 
place at a finite y which can be measured,/3 can be 
calculated from such measurements. 

When Equation 35 is satisfied, a bulge parallel 
to x would appear on the surface. Upon increasing 
load, slip in other planes may occur. These are 
shown in Table I for both  plane stress and plane 

strain. It is seen that the yield conditions are all of  
the general form of  Equation 36. In the case of  

Y 
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Figure 12 The  m a x i m u m  values  for  the  f u n c t i o n  B = AO +- 
sin O. 
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TABLE I Yielding under a smooth flat punch of uniform stress 

(a) Plane stress: Ox.x = (s/~r)(sin q~ -- ~), oyy = -- (s/lr)(sin ~ + qs), ozz = 0 

Yield condition Surface appearance 

(3~_ -- 4/3)4~ + 3a_ sin 4~ = 6rorr/s bulge in x 
(3a_ -- 4/3)q~ -- 3c~_ sin q5 = 6zorr/s bulge in y 

- -  (3a + 2/3)~ + 3,,/(1 + c~ 2) sin 4~ = 3rolr/s shear 

(b) Plane strain: Oxx = (s/Tr)(sin ~ -- ~), eyy = -- (s/Tr)(sin ~ + q~), %z = -- 2u~(s/Tr) 

Yield condition Surface appearance 

[3c~_ -- 6vc% -- 4(1 + u)/3] 4~ + 3e_ sin q5 = 6ro~r/s bulge in x 
[--3~+ + 6v~_ --4(1 +/:)/31 + 3c L sin ~ = 6ro~r/s bulge iny  (small ~) 
[3% -- 6v% -- 4(1 + v)/3] 4~ -- 3~  sin 0 = 6ron/S bulge iny (large (9) 
--[3a + 2(1 + v)~]q~ + 3x/(1 + a2)sinr  = 3roZr/s shear 

plane strain, Oxx > Ozz > oyy for small q~ and 

ozz > oxx > ayy for large ~b. The demarca t ion  q5 is 

when  sin ~ /~  = 1 - 2 u .  

Steel punches  o f  two  sizes, 1.43 and 3.33 m m  

were pressed on to  one side o f  the 2 x 2 cm 2 speci- 

men  in the Instron.  A piece o f  tef lon tape was 

inserted be tween  the punch  and the specimen to  

ensure the boundary  condi t ion  o f  constant  stress 

under  the punch.  The cross head of  the Instron 

was lowered at the rate o f  0.1 m m s e c  -1 and was to 

Figure 13 Optical micrograph of coarse bands appeared 
under a punch. 

reverse its m o t i o n  immedia te ly  when  a preset load 

had reached.  Plane strain cond i t ion  was fulfilled 

by clamping two specimens together  in the thick- 

ness d imension  so that  the total  thickness is 

unchanged during compression.  Plane stress con- 

di t ion was diff icult  to fulfill and was not  used. 

Coarse bands can be easily seen in the optical  

microscope.  They appear to init iate near the y-axis  

as shown in Fig. 13. No detectable  de format ion  

under  the punch  is observable since the coarse 

bands cont r ibu te  li t t le to macroscopic  strain. 

F rom the loca t ion  o f  these bands, /3 can be calcu- 

lated as summarized in Table II. It is seen that  the 

values are consis tent ly  negative. When the a and/3 

values are subst i tuted ' into the four  yielding con- 

dit ions for plane strain in Table I, the  shear 

appearance (for slip on planes parallel to z) 

requires the least load conf i rming the observed 

shear bands. On the optical  micrograph,  two 

circles can be drawn passing through the corners 

o f  the punch and defining the boundar ies  o f  the 

yield region. These two circles should have the 

same ro/S f rom which To can be de termined.  This 

is recorded also in Table II. 

Fine bands cannot  be easily seen in the optical 

microscope .  However ,  they  can be revealed by 

etching wi th  a mix tu re  o f  chromic  and sulphuric 

acids. A typical  opt ical  micrograph is shown in 

TAB L EII  Determination of/3 and ~'o by observing yielding under a punch 

Mode of yielding Punch size 2a (mm) y~/a Y2/a Band appearance /3 Load (N) r o (N mm -~) 

coarse bands 1.43 0.531 1.930 shear --.216 186.5 48.8 
0.615 1.678 shear --.212 185.5 52.1 

3.33 0.66l 1.562 shear --.211 160.6 46.4 
0.781 1.363 shear --.192 155.2 46.4 

fine bands 1.43 0.909 1.497 shear .172 185.8 45.7 
1.035 1.301 shear .172 190.4 45.5 
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Figure 14 Optical micrograph of fine bands 
developed under a punch as revealed by 
etching. 

Fig. 14. Measurements on these graphs enable 
determination of 13 and To as just described. They 
are summarized also in Table II. Since the fine 
bands are main contributors to plastic strain, the 
value of 0.172 for 13 can be compared with 
literature, values on macroscopic yielding experi- 
ments under hydrostatic pressure. By taking our 

value of a,  namely, 0.0, Equation 5 shows that 13 
gives directly the pressure coefficient of  shear 
yield stress. The measurements of  Pugh e t a l .  [14] 
are calculated by Christiansen et  al. [6] to yield a 
value of  0.058. Christiansen e t  al. themselves 
obtained a value of  0.089. On the other hand, 
Whitney and Andrews [3] found a value of  0.23 
and Bowden and Jukes [8] reported a value of 
0.25. The average of  the four values is 0.16 which 
compares reasonably well with our 0.17. The 
reason behind the diversity of  these values is 
unknown at present. 

3.5. The determination of ro 
In addition to the determination of ro under the 
punch, % can be determined also by examining 
Fig. 7. The stress field around a small hole in an 
infinite medium is well known and is shown in 
Fig. 15 for plane strain. For plane stress, Oz~ is 
simply zero. Since shear bands are observed, the 
yield condition, Equation 17, becomes 

X/(1 + ~2) o,~ -- ~0o + ~ 2 

+ ( % . + o o O + O z z )  ( 2 + ~ ) > ~ I - o  (37) 

where ofr , Ooo , Ozz , and ~ro are shown in Fig. 15. 

Y 
S 

oee - s ( l  2a2cos2e) OfF + = + ~2 = (~ZZ/~) 

[ 2 3a4cos } %r - ~ee = s cos ge + ~2-(1 - 2 cos 2e) + ~ 2e 

Figure 15 The stress fietd around a small hole in an infi- 
nite medium under compression. 

Equation 37 with the equality sign is plotted in 
Fig. 16 for coarse bands using c~=0.194 and 

-~ --0.21. These yield loci can be compared with 
pictures such as Fig. 7 to obtain to. The estimated 
values of  7o as a function of temperature are shown 
in Fig. 17. 

For fine bands, To can be calculated directly 
from compressive yield stress on unnotched speci- 
mens because plastic strain is contributed mostly 
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for l iquid nitrogen quenched  specimens.  This m a y  

arise from the possibi l i ty  that quenching  intro- 

duces more  sources for fine band generation. 

- - - -  To / S  : O,51 . -  -- 

I x \ 0 .54  / / I iS2 
", \ Z , ,  V ~ V ,  ~o6o  ~ / X Z ' / ' , / . , N / , /  

/ 
x r / / 

i / / \ \ \  
J ' 

i I / /  

1 [ r 
S 

Figure 16 The theoretical yield loci for coarse bands 
around a small hole under compression. ( . . . . . . . . .  stress; 
- - -  direction.) 
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Figure 1 7 The instrinic Tresca stress for coarse and fine 
bands in polystyrene as a function of temperature 
(~ = 0.005 sec-' ). 

by  f ine bands.  By using Equat ion 10 and k n o w i n g  
and /3, To can be calculated as shown also in 

Fig. 17. It is seen that % for annealed and slow- 
coo led  spec imens  are consistent ly  larger than that 

4 5 6  

3 . 6 .  T h e  y i e l d  s u r f a c e s  f o r  p o l y s t y r e n e  

With all three parameters determined for each 

m o d e  o f  y ie lding as s h o w n  in Table III at room 

temperature,  we  can construct  the projection o f  

these y ie ld  surfaces onto  a co-ordinate plane as 

shown in Figs. 18 and 19. An  outstanding feature 

TABLE Ill Yielding parameters for both coarse and fine 
bands. I r t + c~% + 13a h/> -r o 

c~ # ro (N mm -2 ) 

Coarse bands 0.19 --0.21 52 
Fine bands 0.0 0.17 43 

07, 
N mrn2 I 

150"[  COARSE 

//BA"OS 
,0.04_,_ . . . . . .  -7 

/ 

( ' d  ' I , ) ), ,/ -~o o I 5 % / , o o  ,,~o ~ 
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Figure 18 Plane stress yield envelope for both coarse and 
fine bands in polystyrene (~ = 0.005 sec -1). 
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Figure 19 Plane strain yield projection for both coarse 
and fine bands in polystyrene (~ = 0.005 sec -1). 



is that under tension (without crazing) fine bands 
require less stress than coarse bands and similarly 

under compression. Since coarse bands do not  con- 

tribute much to plastic strain but  do induce shear 

fracture, it is expected that under hydrosta t ic  
pressure a polymer  such as polystyrene may have a 
higher yield stress but  lower ducti l i ty in com- 
pression or when crazing is suppressed. An 
example is PTFE as reported by Sauer et aL [15] ,  
Christiansen et al. [6] ,  and Davis and Pampillo 

[16].  Although there may be other factors, two 
yielding modes with different pressure effects may 
play an impor tant  role in such behaviour. 

4. Summary and conclusions 
( 1 )  A three-parameter polyhedral  yield surface is 

proposed. These three parameters are the intrinsic 
Tresca shear stress, the normal stress coefficient 
(Coulomb friction), and the hydrostat ic  stress 
effect. 

(2) The properties of  such yield surfaces are 
studied in some detail. Behaviour under simple 
tension and compression, hydrosta t ic  pressure, 
and general triaxial stress conditions are discussed. 
The strength differential effect is expressed in 
terms of  the yielding parameters.  

(3) Polystyrene was chosen to apply the theory 
because of  its easily observable shear bands. Two 
distinct shear modes are differentiated and their 
yield behaviour studied separately. 

(4) The normal stress coefficient is determined 
by the angle between shear bands. The hydrosta t ic  
stress effect is determined by  the locat ion of  
yielding under a narrow smooth fiat punch: The 
lat ter  experiment yields also the intrinsic Tresca 

stress. The yield behaviour around a hole is used 
also to determine the yield parameters.  

(5) The yield parameters for both  shear modes 
are shown in Table III for room temperature.  The 
yield surfaces corresponding to these parameters 
are shown in Figs. 18 and 19. Some temperature 
effects are shown in Figs. 9 and 17. 

(6) The increased yield stress and decreased 

ductil i ty for some polymers under hydrosta t ic  

pressure may arise from two yielding modes with 
different pressure effects such as those reported 
here for polystyrene.  
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